[image:]

11_Performance_Cost/DB_Performance_Optimization_Guide.docx

Databricks Performance & Cost Optimization Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	2.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Platform Engineering Team

1. Executive Summary
This comprehensive guide provides strategies for optimizing performance and managing costs on the Databricks platform. It covers Spark performance tuning, cluster optimization, Delta Lake optimizations, query optimization, and cost management best practices. Following these guidelines helps organizations achieve better performance while controlling cloud spending.
Performance vs. Cost Trade-offs
Performance optimization often involves trade-offs with cost. Understanding these trade-offs helps make informed decisions:
	Optimization
	Performance Impact
	Cost Impact
	When to Use

	Larger clusters
	Higher throughput
	Higher cost
	Time-critical workloads

	Photon
	2-8x faster queries
	~2x cost
	SQL-heavy workloads

	Spot instances
	No impact
	60-90% savings
	Fault-tolerant jobs

	Auto-scaling
	Matches demand
	Variable
	Variable workloads

	Caching
	Faster repeated reads
	Memory cost
	Iterative analysis

2. Performance Optimization Architecture
2.1 Optimization Layers
┌───┐
│ PERFORMANCE OPTIMIZATION LAYERS │
├───┤
│ │
│ ┌───┐ │
│ │ LAYER 1: DATA LAYOUT OPTIMIZATION │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ Partitioning│ │ Liquid │ │ Z-Order │ │ File Size │ │ │
│ │ │ Strategy │ │ Clustering │ │ Indexing │ │ Optimization│ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ │ Impact: 10-100x improvement for filtered queries │ │
│ └───┘ │
│ │
│ ┌───┐ │
│ │ LAYER 2: QUERY OPTIMIZATION │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ Predicate │ │ Join │ │ Column │ │ Cache │ │ │
│ │ │ Pushdown │ │ Optimization│ │ Pruning │ │ Strategy │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ │ Impact: 2-10x improvement for analytical queries │ │
│ └───┘ │
│ │
│ ┌───┐ │
│ │ LAYER 3: SPARK CONFIGURATION │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ Memory │ │ Shuffle │ │ Parallelism │ │ AQE │ │ │
│ │ │ Tuning │ │ Tuning │ │ Settings │ │ Settings │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ │ Impact: 1.5-3x improvement with proper tuning │ │
│ └───┘ │
│ │
│ ┌───┐ │
│ │ LAYER 4: CLUSTER OPTIMIZATION │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │Instance Type│ │ Autoscaling│ │ Photon │ │ Spot │ │ │
│ │ │ Selection │ │ Config │ │ Engine │ │ Instances │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ │ Impact: 2-5x performance, 50-80% cost reduction │ │
│ └───┘ │
│ │
└───┘
3. Delta Lake Optimization
3.1 Partitioning Strategy
Partitioning divides data into separate directories based on column values. This enables partition pruning where Spark skips irrelevant partitions entirely.
When to Partition:
Column is frequently used in WHERE clauses
Column has low-to-medium cardinality (< 10,000 distinct values)
Partitions result in files > 1GB each
When NOT to Partition:
High cardinality columns (creates too many small files)
Columns rarely filtered on
Small tables (< 1TB)
-- Good: Partition by low-cardinality date column
-- Each partition will contain ~1 day of data
CREATE TABLE gold.fact_sales (
 sale_id BIGINT,
 customer_id STRING,
 product_id STRING,
 sale_date DATE,
 amount DECIMAL(18,2),
 region STRING
)
USING DELTA
PARTITIONED BY (sale_date)
LOCATION 'abfss://gold@storage.dfs.core.windows.net/fact_sales';

-- Better for very large tables: Partition by month
-- Reduces partition count while maintaining pruning benefits
CREATE TABLE gold.fact_transactions (
 transaction_id BIGINT,
 account_id STRING,
 transaction_timestamp TIMESTAMP,
 amount DECIMAL(18,2),
 year_month STRING GENERATED ALWAYS AS (DATE_FORMAT(transaction_timestamp, 'yyyyMM'))
)
USING DELTA
PARTITIONED BY (year_month)
LOCATION 'abfss://gold@storage.dfs.core.windows.net/fact_transactions';

-- Query benefits from partition pruning
-- Only reads partitions matching the filter
SELECT SUM(amount)
FROM gold.fact_transactions
WHERE year_month = '202501'; -- Only reads January 2025 partition
3.2 Liquid Clustering (Recommended)
Liquid Clustering is the modern replacement for Z-Order and manual partitioning. It automatically optimizes data layout based on specified columns.
Benefits over traditional partitioning:
No need to choose partition column upfront
Handles high-cardinality columns efficiently
Incremental optimization (no full rewrite)
Adaptive to changing query patterns
-- Create table with Liquid Clustering
CREATE TABLE gold.fact_sales_clustered (
 sale_id BIGINT,
 customer_id STRING,
 product_id STRING,
 sale_date DATE,
 region STRING,
 amount DECIMAL(18,2)
)
USING DELTA
CLUSTER BY (region, sale_date) -- Up to 4 columns
TBLPROPERTIES (
 'delta.enableDeletionVectors' = 'true'
);

-- Convert existing table to Liquid Clustering
ALTER TABLE gold.fact_sales
CLUSTER BY (region, sale_date);

-- Trigger clustering optimization
-- This incrementally reorganizes data for better performance
OPTIMIZE gold.fact_sales_clustered;

-- Check clustering effectiveness
DESCRIBE DETAIL gold.fact_sales_clustered;

-- Queries automatically benefit from clustering
SELECT SUM(amount)
FROM gold.fact_sales_clustered
WHERE region = 'NORTH_AMERICA' -- Data skipping applies
 AND sale_date >= '2025-01-01';
3.3 Z-Order Optimization (Legacy)
For tables not yet migrated to Liquid Clustering, Z-Order provides similar benefits:
-- Z-Order by frequently filtered columns
-- Colocates related data for better data skipping
OPTIMIZE gold.fact_sales
ZORDER BY (customer_id, product_id);

-- Z-Order with partition filter for incremental optimization
-- Only optimizes recent data, reducing compute time
OPTIMIZE gold.fact_sales
WHERE sale_date >= DATEADD(DAY, -7, CURRENT_DATE())
ZORDER BY (customer_id, product_id);

-- Schedule regular Z-Order optimization
-- Run during low-usage periods
3.4 File Size Optimization
Small files hurt performance due to overhead. Large files reduce parallelism. Target 128MB-1GB files.
-- Configure optimal file sizes
ALTER TABLE gold.fact_sales
SET TBLPROPERTIES (
 -- Target file size during writes
 'delta.targetFileSize' = '128mb',

 -- Auto-optimize on write (combines small files)
 'delta.autoOptimize.optimizeWrite' = 'true',

 -- Auto-compact small files periodically
 'delta.autoOptimize.autoCompact' = 'true'
);

-- For streaming tables with frequent small writes
ALTER TABLE silver.streaming_events
SET TBLPROPERTIES (
 'delta.autoOptimize.optimizeWrite' = 'true',
 'delta.autoOptimize.autoCompact' = 'true',
 -- Trigger compaction when 50+ small files accumulate
 'delta.autoOptimize.autoCompact.minNumFiles' = '50'
);

-- Manual compaction for heavily fragmented tables
OPTIMIZE gold.fact_sales
WHERE sale_date >= '2025-01-01';

-- Check current file statistics
SELECT
 COUNT(*) AS num_files,
 SUM(size) / 1024 / 1024 / 1024 AS total_size_gb,
 AVG(size) / 1024 / 1024 AS avg_file_size_mb,
 MIN(size) / 1024 / 1024 AS min_file_size_mb,
 MAX(size) / 1024 / 1024 AS max_file_size_mb
FROM (DESCRIBE DETAIL gold.fact_sales);
3.5 Deletion Vectors
Deletion Vectors make DELETE and UPDATE operations much faster by marking rows as deleted without rewriting files:
-- Enable deletion vectors
ALTER TABLE gold.fact_sales
SET TBLPROPERTIES ('delta.enableDeletionVectors' = 'true');

-- Deletes are now instant (no file rewriting)
DELETE FROM gold.fact_sales
WHERE sale_id IN (1001, 1002, 1003);

-- Updates also benefit
UPDATE gold.fact_sales
SET amount = amount * 1.1
WHERE region = 'NORTH_AMERICA';

-- Periodically compact to apply deletion vectors
-- This physically removes deleted data
OPTIMIZE gold.fact_sales;
4. Query Optimization
4.1 Predicate Pushdown
Predicate pushdown moves filters as close to the data source as possible, reducing data scanned:
-- Good: Filter is pushed down to Delta
-- Only reads relevant files based on statistics
SELECT *
FROM gold.fact_sales
WHERE sale_date = '2025-01-29' -- Pushed to Delta layer
 AND region = 'NORTH_AMERICA'; -- Also pushed

-- Bad: Function prevents pushdown
-- Must read all data, then filter
SELECT *
FROM gold.fact_sales
WHERE YEAR(sale_date) = 2025; -- Cannot push down

-- Better: Rewrite to enable pushdown
SELECT *
FROM gold.fact_sales
WHERE sale_date >= '2025-01-01'
 AND sale_date < '2026-01-01';
4.2 Join Optimization
-- Broadcast small tables (< 10MB default)
-- Small table is sent to all executors, avoiding shuffle
SELECT /*+ BROADCAST(d) */ f.*, d.product_name
FROM gold.fact_sales f
JOIN gold.dim_products d ON f.product_id = d.product_id;

-- Increase broadcast threshold for larger dimension tables
SET spark.sql.autoBroadcastJoinThreshold = 100m;

-- Bucket join for large-large table joins
-- Tables bucketed on join key can join without shuffle
CREATE TABLE gold.fact_sales_bucketed
USING DELTA
CLUSTERED BY (customer_id) INTO 256 BUCKETS
AS SELECT * FROM gold.fact_sales;

CREATE TABLE gold.dim_customers_bucketed
USING DELTA
CLUSTERED BY (customer_id) INTO 256 BUCKETS
AS SELECT * FROM gold.dim_customers;

-- Join is now shuffle-free
SELECT f.*, c.customer_name
FROM gold.fact_sales_bucketed f
JOIN gold.dim_customers_bucketed c
 ON f.customer_id = c.customer_id;

-- Skew join hint for uneven data distribution
SELECT /*+ SKEW('f', 'customer_id', ('C1000', 'C2000')) */
 f.*, c.customer_name
FROM gold.fact_sales f
JOIN gold.dim_customers c ON f.customer_id = c.customer_id;
4.3 Adaptive Query Execution (AQE)
AQE automatically optimizes queries at runtime based on actual data statistics:
-- AQE is enabled by default in Databricks
-- Verify settings
SET spark.sql.adaptive.enabled; -- Should be true

-- Key AQE features:
-- 1. Coalesce shuffle partitions
SET spark.sql.adaptive.coalescePartitions.enabled = true;

-- 2. Convert sort-merge join to broadcast join
SET spark.sql.adaptive.localShuffleReader.enabled = true;

-- 3. Handle skewed joins automatically
SET spark.sql.adaptive.skewJoin.enabled = true;

-- Monitor AQE optimizations in Spark UI
-- Look for "AQE" badge on query stages
5. Cluster Optimization
5.1 Instance Type Selection
	Workload Type
	Recommended Instance
	Characteristics

	ETL/Batch
	Memory-optimized (r5, r6i)
	High memory for shuffles

	SQL Analytics
	Compute-optimized (c5, c6i)
	CPU for query processing

	ML Training
	GPU (p3, p4, g5)
	GPU acceleration

	General
	General purpose (m5, m6i)
	Balanced

	Streaming
	Memory-optimized
	State storage

Cluster configuration for ETL workloads
etl_cluster_config = {
 "spark_version": "14.3.x-scala2.12",
 "node_type_id": "r5.2xlarge", # Memory-optimized
 "driver_node_type_id": "r5.xlarge",
 "num_workers": 8,
 "spark_conf": {
 "spark.databricks.delta.optimizeWrite.enabled": "true",
 "spark.sql.shuffle.partitions": "auto"
 }
}

Cluster configuration for SQL analytics
sql_cluster_config = {
 "spark_version": "14.3.x-photon-scala2.12", # Photon-enabled
 "node_type_id": "c5.4xlarge", # Compute-optimized
 "num_workers": 4,
 "spark_conf": {
 "spark.databricks.photon.enabled": "true"
 }
}
5.2 Auto-scaling Configuration
Auto-scaling cluster for variable workloads
autoscaling_cluster = {
 "spark_version": "14.3.x-scala2.12",
 "node_type_id": "m5.2xlarge",
 "autoscale": {
 "min_workers": 2, # Minimum for quick start
 "max_workers": 20 # Maximum for peak load
 },
 "autotermination_minutes": 30, # Terminate if idle
 "spark_conf": {
 # Enable dynamic allocation
 "spark.databricks.cluster.profile": "serverless",
 "spark.dynamicAllocation.enabled": "true"
 }
}

Job cluster (more cost-effective for jobs)
job_cluster = {
 "spark_version": "14.3.x-scala2.12",
 "node_type_id": "m5.2xlarge",
 "num_workers": 4, # Fixed size for predictable jobs
 # No autotermination needed - cluster terminates when job ends
}
5.3 Spot Instances
Spot instances provide significant cost savings (60-90%) but can be interrupted:
AWS Spot configuration
aws_spot_config = {
 "spark_version": "14.3.x-scala2.12",
 "node_type_id": "m5.2xlarge",
 "num_workers": 8,
 "aws_attributes": {
 "availability": "SPOT_WITH_FALLBACK", # Fall back to on-demand
 "spot_bid_price_percent": 100, # Max bid: on-demand price
 "first_on_demand": 1, # Keep driver on-demand
 "zone_id": "auto" # Auto-select zone with capacity
 }
}

Azure Spot configuration
azure_spot_config = {
 "spark_version": "14.3.x-scala2.12",
 "node_type_id": "Standard_DS3_v2",
 "num_workers": 8,
 "azure_attributes": {
 "availability": "SPOT_WITH_FALLBACK_AZURE",
 "spot_bid_max_price": -1 # Use on-demand price as max
 }
}
5.4 Photon Acceleration
Photon is Databricks' native vectorized query engine that accelerates SQL and DataFrame operations:
Enable Photon on cluster
photon_cluster = {
 "spark_version": "14.3.x-photon-scala2.12", # Photon runtime
 "node_type_id": "c5.4xlarge",
 "num_workers": 4,
 "spark_conf": {
 "spark.databricks.photon.enabled": "true"
 }
}

Check if Photon is being used
In query plan, look for "Photon" prefix on operators
spark.sql("EXPLAIN SELECT * FROM table").show(truncate=False)
6. Cost Management
6.1 Cost Visibility
-- Query billing usage (system table)
SELECT
 usage_date,
 workspace_id,
 sku_name,
 usage_unit,
 SUM(usage_quantity) as total_usage,
 SUM(usage_quantity * list_price) as estimated_cost
FROM system.billing.usage
WHERE usage_date >= DATEADD(DAY, -30, CURRENT_DATE())
GROUP BY usage_date, workspace_id, sku_name, usage_unit
ORDER BY estimated_cost DESC;

-- Cost by cluster/job
SELECT
 usage_date,
 cluster_id,
 usage_metadata.job_id,
 usage_metadata.job_name,
 SUM(usage_quantity) as dbu_usage
FROM system.billing.usage
WHERE usage_date >= DATEADD(DAY, -7, CURRENT_DATE())
GROUP BY usage_date, cluster_id, usage_metadata.job_id, usage_metadata.job_name
ORDER BY dbu_usage DESC;
6.2 Cost Optimization Strategies
1. Use auto-termination for interactive clusters
cluster_with_autotermination = {
 "autotermination_minutes": 30, # 30 minutes idle
}

2. Use job clusters instead of all-purpose clusters
Job clusters are created for job execution and terminated after

3. Right-size clusters based on workload
Monitor cluster utilization in Spark UI

4. Use SQL Warehouses for SQL workloads
Serverless SQL Warehouses are often more cost-effective

5. Schedule jobs during off-peak hours
Some cloud regions have lower spot prices at night

6. Use cluster policies to enforce cost controls
cost_control_policy = {
 "autotermination_minutes": {
 "type": "range",
 "minValue": 10,
 "maxValue": 60,
 "defaultValue": 30
 },
 "node_type_id": {
 "type": "allowlist",
 "values": ["m5.large", "m5.xlarge", "m5.2xlarge"]
 },
 "autoscale.max_workers": {
 "type": "range",
 "maxValue": 10
 }
}
6.3 Cost Allocation Tags
Use tags for cost allocation and tracking
cluster_with_tags = {
 "spark_version": "14.3.x-scala2.12",
 "custom_tags": {
 "Team": "data-engineering",
 "Project": "sales-analytics",
 "CostCenter": "DE-100",
 "Environment": "production"
 }
}

Tags flow through to cloud billing
Enable tag-based cost reporting in cloud console
7. Performance Monitoring
7.1 Key Metrics to Monitor
	Metric
	Good Value
	Action if Bad

	Task Duration
	< 2 min avg
	Increase parallelism

	Shuffle Spill
	0 bytes
	Increase executor memory

	GC Time
	< 10%
	Tune memory settings

	Task Skew
	< 2x variance
	Address data skew

	Stage Duration
	< 10 min
	Optimize slow stages

7.2 Spark UI Analysis
Key areas to check in Spark UI:

1. SQL/DataFrame tab
- Check query plans for table scans vs. pruned reads
- Look for broadcast vs. sort-merge joins

2. Stages tab
- Identify slow stages
- Check for data skew (max task >> median task)

3. Storage tab
- Monitor cached data
- Check memory pressure

4. Executors tab
- Monitor executor health
- Check for failed/killed executors
8. Quick Reference
8.1 Performance Checklist
	Area
	Optimization
	Impact

	Data Layout
	Enable Liquid Clustering
	High

	Data Layout
	Set target file size 128MB-1GB
	Medium

	Data Layout
	Enable deletion vectors
	Medium

	Query
	Use predicate pushdown
	High

	Query
	Broadcast small tables
	Medium

	Query
	Enable AQE
	Medium

	Cluster
	Enable Photon
	High

	Cluster
	Use Spot instances
	Cost

	Cluster
	Right-size workers
	Medium

Document Control
	Version
	Date
	Author
	Changes

	1.0
	2025-01-24
	Platform Team
	Initial document

	2.0
	2025-01-29
	Platform Team
	Added Liquid Clustering, cost management

This document is maintained by the Platform Engineering Team. For questions or updates, contact the team via the #platform-engineering Slack channel.
image1.png
#MAST=CH
DIGITAL

